Downregulation of transforming growth factor-β type II receptor prohibit epithelial-to-mesenchymal transition in lens epithelium

نویسندگان

  • Danying Zheng
  • Tingting Song
  • Xueying Zhongliu
  • Mingxing Wu
  • Jingli Liang
  • Yizhi Liu
چکیده

PURPOSE Transforming growth factor-β (TGF-β) is considered to be essential to induce epithelial-to-mesenchymal transition (EMT) which plays central roles in wound healing in ocular fibrotic complication. The present study investigates whether small interference RNAs (siRNAs) targeting the type II receptor of TGF-β (TβRII) could be used to minimize the TGF-β action. METHODS TGF-β receptor type II (TβRII) specific siRNAs designed from the Nakamura human gene sequence were used to transfect the cultured lens epithelial cells (LECs). The optimal transfection of scramble siRNA-Cy3 labeled duplexes in cultured LECs were examined by laser scanning confocal microscope and flow cytometry. TβRII protein expression and transcript levels were analyzed by immunofluorescence, western blotting, and real time PCR, respectively. Western blotting was performed to examine protein expression of fibronectin and alpha-smooth muscle actin (α-SMA). Scratch assay was used to determine cell migration. Cell morphology was observed after transfection by inverted microscope. RESULTS The optimal transfection rate of scramble siRNA-Cy3 labeled duplexes was efficient in that nearly to 50% in cultured LECs. TβRII specific siRNAs significantly reduced the receptor transcript and protein expression in cultured LECs. The gene knockdown inhibited LECs transdifferentiation, as it abrogated the expression of fibronectin and α-SMA, and retarded cell migration on the scratch assay. In addition, after transfection with TβRII specific siRNA, the cultured LECs did not show fibroblast-like shape which was one of the feature signs of EMT. Wound scratch assays indicated that the number of cultured LECs migrated into the wounded area was significantly lower in TβRII specific siRNA treated group (12.8 ± 3.27/7.85 mm(2)), compared with normal (57.8 ± 3.06/7.85 mm(2)) and scrambled RNA transfected group (50.8 ± 3.64/7.85 mm(2); p<0.0001). CONCLUSIONS Our results provided additional evidence to support that TGF-β pathway was involved in the development of EMT of human posterior capsule opacification, while how TβRII was involved should be further investigated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NDRG2 Regulates the Expression of Genes Involved in Epithelial Mesenchymal Transition of Prostate Cancer Cells

Background: Metastasis is the main cause of prostate cancer (PCa) death. The inhibitory effect of N-myc downstream-regulated gene 2 (NDRG2) on the invasiveness properties of PCa cells has been demonstrated previously. However, its underlying mechanisms have not yet been investigated. The present study aimed to investigate the effects of NDRG2 overexpression on the expression of genes involved i...

متن کامل

Sprouty2 Suppresses Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells through Blockade of Smad2 and ERK1/2 Pathways

Transforming growth factor β (TGFβ)-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) plays a key role in the pathogenesis of anterior subcapsular cataract (ASC) and capsule opacification. In mouse lens, Sprouty2 (Spry2) has a negative regulatory role on TGFβ signaling. However, the regulation of Spry2 during ASC development and how Spry2 modulates TGFβ signaling p...

متن کامل

Suppression of injury-induced epithelial-mesenchymal transition in a mouse lens epithelium lacking tenascin-C

PURPOSE To investigate the role of tenascin-C in epithelial-mesenchymal transition (EMT) of the lens epithelium during wound healing in mice. Tenascin-C is a component of the extracellular matrix in patients having post-operative capsular opacification. METHODS The crystalline lens was injured by needle puncture in tenascin-C null (KO, n=56) and wild-type (WT, n=56) mice in a C57BL/6 backgrou...

متن کامل

AM251 Suppresses Epithelial-Mesenchymal Transition of Renal Tubular Epithelial Cells

Epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells is one of the causative mechanisms of kidney fibrosis. In our study, we screened lipophilic compounds using a lipid library including approximately 200 lipids to identify those that suppressed EMT induced by a transforming growth factor (TGF)-β1 stimulus. Initial screening was performed with the immortalized HK-2 renal tu...

متن کامل

The roles of signaling pathways in epithelial-to-mesenchymal transition of PVR

Proliferative vitreoretinopathy (PVR) is the major cause of failure in patients undergoing surgery for rhegmatogenous retinal detachment (RRD). Characterized by the formation of an abnormal contractile membrane within the eye, PVR can cause tractional retinal redetachment. Epithelial-to-mesenchymal transition (EMT), in which epithelial cells morphologically and phenotypically transdifferentiate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2012